(1) (10 marks) Let X and Y be normed linear spaces, and let $T : X \to Y$ be a linear operator. Prove that $T \in \mathcal{B}(X, Y)$ if and only if

 $\sup\{\|Tx\| : x \in X, \|x\| \le 1\} < \infty.$

- (2) (10 marks) Prove that the closed unit ball of c_0 does not have any extreme points.
- (3) (15 marks) True or false (with proper justification):
 (i) l[∞] has a Schauder basis.
 (ii) C[0, 1] is separable.
 (iii) l³ \ l² ≠ Ø.

(4) (15 marks) Let $\{a_n\} \in l^{\infty}$. Consider the linear map $T: l^{\infty} \to l^{\infty}$ defined by

$$T(\{x_n\}) = \{a_1x_1, a_2x_2, \ldots\} \qquad (\{x_n\} \in l^{\infty}).$$

Prove that T is bounded. Also compute the norm of T.

- (5) (15 marks) Compute the dual of l^2 .
- (6) (15 marks) Let X and Y be Banach spaces, and let \mathcal{D} be a dense subset of X. Let $\{T_n\} \subseteq \mathcal{B}(X,Y)$ be a uniformly bounded sequence (that is, $\sup_n ||T_n|| < \infty$). If $\{T_nx\} \subseteq Y$ is a Cauchy sequence for all $x \in \mathcal{D}$, then prove that there exists $T \in \mathcal{B}(X,Y)$ such that $T_nx \to Tx$, as $n \to \infty$, for all $x \in X$.
- (7) (15 marks) Find a sequence of functions that converge in $L^1[0,1]$ but not in $L^{\infty}[0,1]$.
- (8) (15 marks) Let $\{a_n\} \subseteq \mathbb{C}$ be a sequence. Suppose that the series $\sum a_n x_n$ is convergent for all $\{x_n\} \in c_0$. Prove that $\{a_n\} \in l^1$.